perm filename SET.AX[226,JMC] blob
sn#005425 filedate 1972-09-27 generic text, type T, neo UTF8
00100 COMMENT - Not all individuals are sets and ISSET X asserts
00200 that X is a set. ;
00300 GIVEAX(ISSET,(∀ X)(∀ Y)(XεY ⊃ ISSET Y));
00400
00500 GIVEAX(EXTENSIONALITY,(∀ U)(∀ V)(ISSET U ∧ ISSET V ⊃
00600 ((∀ X)(XεU ≡ XεV) ⊃ U=V)));
00700
00800 GIVEAX(NULLSET,ISSET NULLSET);
00900
01000 GIVEAX(NULL1,(∀ X)(¬(XεNULLSET)));
01100
01200 GIVEAX(UNITSET,(∀ X)(∀ Y)(YεUNITSET(X)≡(Y=X)));
01300
01400 GIVEAX(UNIONSET,(∀ X)(∀ Y)(ISSET X ∧ ISSET Y ⊃ ISSET (X ∪ Y)));
01500
01600 GIVEAX(UNIONAX,(∀ X)(∀ Y)(∀ Z)(Zε(X ∪ Y)≡ZεX∨ZεY));
01700
01800 GIVEAX(INTERSET,(∀ X)(∀ Y)(ISSET X ∧ ISSET Y ⊃ ISSET(X∩Y)));
01900
02000 GIVEAX(INTER,(∀ X)(∀ Y)(∀ Z)(ZεX∩Y ≡ ZεX AND ZεY));
02100
02200 GIVEAX(CARTSET,(∀ X)(∀ Y)(ISSET X ∧ ISSET Y ⊃ ISSET(X⊗Y)));
02300
02400 COMMENT - We use the LISP . for the function that makes
02500 an ordered pair out of its members. ;
02600 GIVEAX(CARTESIAN,(∀ X)(∀ Y)(∀ Z)(Z ε X⊗Y ≡
02700 (∃ U)(∃ V)(UεX ∧ VεY ∧ Z=U.V)));
02800
02900 GIVEAX(PAIR,(∀ X)(∀ Y)(∀ U)(∀ V)(X.Y=U.V ≡ X=U ∧ Y=V));
03000
03100 GIVEAX(CONTAIN,(∀ U)(∀ V)(U⊂V ≡ (∀ X)(XεU ⊃ XεV)));
03200
03300 COMMENT - The set of maps from X to Y. ;
03400 GIVEAX(POWERSET,(∀ X)(∀ Y)(ISSET X ∧ ISSET Y ⊃ ISSET(X→Y)
03500 ∧(∀ F)(F ε (X→Y)⊃ISMAP F ∧ X=DOMAIN F ∧ Y = RANGE F)));
03600
03700 COMMENT - We will make extensive use of the convention
03800 that each map has a domain and a range. In particular,
03900 two maps are different if they have different ranges
04000 even if they have the same domains and take on the same
04100 values. ;
04200 GIVEAX(MAP,(∀ F)(ISMAP F ⊃ ISSET DOMAIN F ∧ ISSET RANGE F
04300 Fε(DOMAIN F → RANGE F)));
04400
04500 GIVEAX(APPLY,(∀ F)(∀ X)(∀ U)(∀ V)(Fε(U→V) ∧ XεU ⊃ β(F,X)εV));
04600
04700 GIVEAX(FEXTENSIONALITY,(∀ U)(∀ V)(∀ F)(∀ G)(Fε(U→V) ∧ Gε(U→V) ⊃
04800 (F=G ≡ (∀ X)(XεU ⊃ β(F,X)=β(G,X)))));
04900
05000 GIVEAX(FNDEF,(∀ FF)(∀ U)(∀ V)(ISSET U ∧ ISSET V ∧ ISSET FF ∧
05100 (FF ⊂ U⊗V) ∧ (∀ X)(XεU ⊃ (∃ Y)(YεV ∧ (X.Y)εFF)) ∧
05200 (∀ X)(∀ Y)(∀ Z)(XεU ∧ YεV ∧ X.Y ε FF ∧ X.Z ε FF ⊃ Y=Z)
05300 ⊃
05400 (∃ F)(Fε(U→V)∧(∀ X)(XεU ⊃ X.β(F,X) ε FF))));
05500
05600 GIVEAX(DIFFSET,(∀ X)(∀ Y)(ISSET X ∧ ISSET Y ⊃ ISSET(X-Y) ∧
05700 (∀ Z)(Zε(X-Y) ≡ ZεX ∧ ¬(ZεY))));
05800
05900 GIVEAX(BIGUNION,(∀ X)(ISSET X ∧ (∀ Y)(YεX ⊃ ISSET Y) ⊃
06000 ISSET BIGUNION X ∧ (∀ Z)(ZεBIGUNION X ≡ (∃ Y)(
06100 YεX ∧ ZεY))));
06200
06300 GIVEAX(BIGINTER,(∀ X)(ISSET X ∧ (∀ Y)(YεX ⊃ ISSET Y) ⊃
06400 ISSET BIGINTER X ∧ (∀ Z)(ZεBIGUNION X ≡ (∀ Y)(
06500 YεX ⊃ ZεY))));
06600
06700 GIVESCHM(COMPREHENSION,(PRED PP)(∀ UU)(ISSET UU ⊃
06800 (∃ WW)(ISSET WW ∧ (∀ XX)(XXεWW ≡ XXεUU ∧ PP XX))));
06900
07000 GIVEAX(RELATION,(∀ R)(RELATION R ≡ ISMAP R ∧
07100 RANGE R = (DOMAIN R → TV)));
07200
07300 GIVEAX(TV,T≠ F ∧((∀ X)(XεTV ≡ X=T ∨ X=F)));
07400
07500 GIVEAX(RRANGE,(∀ F)(ISMAP F ⊃ (∀ X)(XεRRANGE F ≡
07600 XεRANGE F ∧ (∃ Y)(YεDOMAIN F ∧ β(F,Y)=X))));
07700
07800 GIVEAX(EASYREL,(∀ R)(RELATION R ⊃ (∀ X)(∀ Y)(β(β(R,X),Y)=T
07900 ≡ββ(X,R,Y))));
08000
08100 GIVEAX(BETA2,(∀ F)(∀ X)(∀ Y)(β2(F,X,Y)=β(β(F,X),Y)));
08200
08300 GIVEAX(BETA3,(∀ F)(∀ X)(∀ Y)(∀ Z)(β3(F,X,Y,Z)=β(β(β(F,X),Y),Z)));
08400
08500 GIVEAX(BETA4,(∀ F)(∀ X)(∀ Y)(∀ Z)(∀ W)(β4(F,X,Y,Z,W) =
08600 β(β(β(β(F,X),Y),Z),W)));
08700
08800 GIVEAX(TRIVIAL,(∀ R)(∀ U)(TRIVIAL(R,U) ≡ RELATION R
08900 ∧ ISSET U ∧ U ⊂ DOMAIN R ∧ (∀ X)(∀ Y)(XεU
09000 ∧YεU ⊃ ββ(X,R,Y)=F)));
09100
09200 GIVESCHM(FCOMPREHENSION,(PRED FF)(∀ U)(∀ V)(ISSET U ∧ ISSET V
09300 ∧ (∀ X)(XεU ⊃ FF X ε V) ⊃ (∃ F)(Fε(U→V) ∧
09400 (∀ X)(XεU ⊃ β(F,X) = FF X))));
09500
09600 GIVEAX(FINITE1,FINITE NULLSET);
09700
09800 GIVEAX(FINITE2,(∀ U)(∀ X)(ISSET U ∧ FINITE U
09900 ⊃ FINITE(U ∪ UNITSET X)));
10000
10100 GIVEAX(INFINITE,(∀ U)(∀ V)(ISSET U ∧ ISSET V ∧ INFINITE U
10200 ∧ FINITE V ⊃ (∃ X)(XεU ∧ ¬(XεV))));
00100 END;